Name
catanh, catanhf, catanhl - complex arc tangents hyperbolicLibrary
Math library ( libm ", " -lm )Synopsis
#include <complex.h> double complex catanh(double complex z );
float complex catanhf(float complex z );
long double complex catanhl(long double complex z );
Description
These functions calculate the complex arc hyperbolic tangent ofz. If y\~=\~catanh(z), then z\~=\~ctanh(y). The imaginary part of y is chosen in the interval [-pi/2,pi/2]. One has:
catanh(z) = 0.5 * (clog(1 + z) - clog(1 - z))
Attributes
For an explanation of the terms used in this section, see attributes(7).| Interface | Attribute | Value |
| T} | Thread safety | MT-Safe |
Standards
C11, POSIX.1-2008.History
glibc 2.1. C99, POSIX.1-2001.Examples
/* Link with "-lm" */
#include <complex.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int
main(int argc, char *argv[])
{
double complex z, c, f;
if (argc != 3) {
fprintf(stderr, "Usage: %s <real> <imag>\en", argv[0]);
exit(EXIT_FAILURE);
}
z = atof(argv[1]) + atof(argv[2]) * I;
c = catanh(z);
printf("catanh() = %6.3f %6.3f*i\en", creal(c), cimag(c));
f = 0.5 * (clog(1 + z) - clog(1 - z));
printf("formula = %6.3f %6.3f*i\en", creal(f), cimag(f));
exit(EXIT_SUCCESS);
}